Agritechnica 2017 was my third visit after 2013 and 2015. My focus was on terminals (display computers) as usual.
The standard terminal of 2017 is powered by a quad-core NXP i.MX6 processor (32-bit ARM Cortex-A9 with ARMv7a architecture) and has an HD 12-inch multi-touch display (resolution: 1280×800, format: 16:10). The new ISOBUS terminal CCI 1200 manufactured by CrossControl is the prime example.
In 2013, there were only terminals with single-core Cortex-A8 processors (NXP i.MX53). In 2015, there was only the odd prototype terminal with a quad-core i.MX6 in 2015 (from Grammer Belgium) but no production-quality ones. In 2017, most terminals sport a quad-core i.MX6 (Cortex-A9) processor. The processing power of terminals increases very, very slowly.
Compare this to a typical processor used in today’s in-vehicle infotainment systems. For example, the Renesas R-Car M3 sports two Cortex-A57 and four Cortex-A53 cores (all 64-bit), which has the performance of low-end to mid-range desktop PCs. Agricultural terminals need this procesing power as well, if the agricultural industry is serious about autonomous seeding, spraying and harvesting.
CLAAS demonstrated a first step into this direction. A camera is trained on the crop flow. An image recognition software (most likely using machine learning) detects whether the grains are too dirty and whether there are foreign particles between the grains. The future will see more and more such software to deduce actions from sensor data.
These expensive computations must be performed onboard the machine, because the Internet connection is not good enough on the field to send the data to powerful servers and to perform the computations there. The most powerful computer on the machine is typically the terminal. Current terminals are not powerful enough for these computations.
One terminal stands out from the uniform, slightly boring bulk of 12-inch, 1280×800 and quad-core i.MX6 terminals: the PowerView 1200 from Murphy by Enovation Controls. It is powered by a dual-core Cortex-A15 and has a 12.3-inch multi-touch display with a resolution of 1280×480 (format: 8:3). The PowerView 1200 is well-suited for dashboards and can double up as a rearview mirror.
I’ll take a more detailed look at some terminals in the rest of this post. I will ignore quite a few terminals, because they don’t stand out in any way from the rest or I simply overlooked them.
Read More »Agritechnica 2017: What’s New for Terminals?