Skip to content

embedded Linux

Setting Up Yocto Projects with kas

Kas makes the setup of a Yocto build environment super simple and super fast. We call kas with a project configuration file: kas-container build ./eu-terminal-distro.yml. Kas starts a Docker container, clones the layer repositories, initialises the Yocto configuration files (local.conf and bblayers.conf), and starts building the embedded Linux system. Most Linux BSP providers don’t make a kas configuration file available. I’ll show how to convert a repo manifest file into a kas configuration file in this post.

Read More »Setting Up Yocto Projects with kas
Ports-and-adapters architecture for harvester terminal with GUI, Cloud, Machine and Customer adapter.

My Talk “A Successful Architecture for Qt Embedded Systems” at Qt Day Italy 2021

Creating an architecture means answering many questions about the ecosystem, in which the Qt embedded system operates. While the questions are very similar for all Qt embedded systems, the answers and their priorities differ. So, you should be able to transfer the questions and answers from my running example, a harvester terminal, to your system.

Read More »My Talk “A Successful Architecture for Qt Embedded Systems” at Qt Day Italy 2021
Window manager showing split view of home (left) and of turbine cam (right).

Architecture of Qt Embedded Systems: Single vs. Multiple GUI Applications

Our quest for a successful architecture of a harvester terminal continues. In this episode, we discuss when a system with a single application is good enough and when a system with multiple applications and a window manager is the better choice. Sometimes, a single-application system with a window manager is just the right choice.

Read More »Architecture of Qt Embedded Systems: Single vs. Multiple GUI Applications
High-level architecture of Qt embedded system with controller, cloud and sensor

Architecture of Qt Embedded Systems: Getting Started

Which system-on-chip is best suited for your Qt embedded system? Should you build a custom Linux system with Yocto, use a container OS or a desktop Linux? Should you use Qt Commercial or Qt LGPLv3? How will the system be updated? What are the operating conditions of the system? How does the system communicate with sensors, ECUs and the cloud?

This is only a small selection of the 50+ questions in this post. You best tackle these questions early in the project. Fixing wrong decisions becomes exponentially harder with the duration of the project. Your decisions can make or break a project.

Read More »Architecture of Qt Embedded Systems: Getting Started
Build, deploy and run Qt application on embedded device by pressing the Run button in QtCreator.

Cross-Compiling Qt Embedded Applications with QtCreator and CMake

We change the code of our Qt application in QtCreator and press the Run button to try the changes on an embedded device. QtCreator cross-compiles the application, deploys it to the device and runs it on the device. QtCreator performs these steps in a breeze, because we spent quite some time to define a QtCreator Kit. The fairly unknown script configure-qtcreator.sh from the Yocto layer meta-boot2qt automates most of the kit definition.

Read More »Cross-Compiling Qt Embedded Applications with QtCreator and CMake